M1. (a) It will have a constant speed.
(b) distance travelled $=$ speed \times time
(c) $\mathrm{a}=\underline{18-9}$

6

$$
a=1.5
$$

allow 1.5 with no working shown for 2 marks
(d) resultant force $=$ mass \times acceleration
(e) $\mathrm{F}=(1120+80) \times 1.5$

$$
\mathrm{F}=1800(\mathrm{~N})
$$

allow 1800 with no working shown for 2 marks
accept their 10.3×1200 correctly calculated for 2 marks
(f) $18^{2}-9^{2}=2 \times 1.5 \times \mathrm{s}$

$$
\mathrm{s}=18^{2}-9^{2} / 2 \times 1.5
$$

$$
\mathrm{s}=81(\mathrm{~m})
$$

allow 81 (m) with no working shown for $\mathbf{3}$ marks accept answer using their 10.3 (if not 1.5) correctly calculated for 3 marks

(g) Level 2 (3-4 marks):

A detailed and coherent explanation is provided. The response makes logical links between clearly identified, relevant points that include references to the numerical factor.

Level 1 (1-2 marks):
Simple statements are made. The response may fail to make logical links between the points raised.

0 marks:
No relevant content.

Indicative content

- doubling speed increase the kinetic energy
- kinetic energy increases by a factor of 4
- work done (by brakes) to stop the car increases
- work done increases by a factor of 4
- work done is force \times distance and braking force is constant
- so if work done increases by 4 then the braking distance must increase by 4

M2. (a) (i) kinetic (energy)
allow gravitational potential (energy) / gpe movement is insufficient
(ii) dissipates into the surroundings allow warms up the surroundings / air / motor accept lost to the surroundings accept lost as heat ignore reference to sound it is lost is insufficient

1
(b) energy (required) increases with load accept positive correlation do not accept (directly) proportional
further amplification eg increases slowly at first (or up to $4 / 5 \mathrm{~N}$), then increases rapidly
simply quoting figures is insufficient
an answer that only describes the shape of the line gains no marks
(c) (i) $E=P \times t$

2880
accept $£ 28.80$ for all $\mathbf{3}$ marks
an answer £2880 gains 2 marks
allow 1 mark for obtaining 48 h or converting to kW
allow 2 marks for correct substitution
ie $4 \times 48 \times 15$
note: this substitution may be shown as two steps
an answer 2880000 gains 2 marks
an answer £4.80 / 480 gains 2 marks
an answer of 192 (ie calculation of energy without subsequent calculation of cost) gains 1 mark)
(ii) any sensible suggestion eg
conserves fossil fuels
less (fossil) fuels burned
less pollutant gas (produced)
accept a named pollutant gas
less greenhouse gas (produced)
saves energy is insufficient

